Tesseroids |
Uieda, L., V. Barbosa, and C. Braitenberg (2016), Tesseroids: Forward-modeling gravitational fields in spherical coordinates, GEOPHYSICS, F41-F48, doi:10.1190/geo2015-0204.1 |
magnetic-tesseroids |
Eldar Baykiev, Jörg Ebbing, Marco Brönner, Karl Fabian (2016), Forward modeling magnetic fields of induced and remanent magnetization in the lithosphere using tesseroids, Computers & Geosciences, 96, 124-135, doi: 10.1016/j.cageo.2016.08.004 |
magtess-inversion-python |
Baykiev, E., Yixiati, D., & Ebbing, J. (2020). Global High-Resolution Magnetic Field Inversion Using Spherical Harmonic Representation of Tesseroids as Individual Sources. Geosciences, 10(4), 147. doi: 10.3390/geosciences10040147 |
Gravitational_Curvatures_of_Tesseroids |
Deng XL, Shen WB. (2019). Topographic effects up to Gravitational Curvatures of tesseroids: A case study in China. Studia Geophysica et Geodaetica, 63(3), 345-366. doi: 10.1007/s11200-018-0772-4 |
tesseroid-variable-density |
Soler, S. R., Pesce, A., Gimenez, M. E., & Uieda, L., (2019). Gravitational field calculation in spherical coordinates using variable densities in depth, Geophysical Journal International, doi:10.1093/gji/ggz277 |
Fatiando a Terra 0.5 |
Uieda, L., V. C. Oliveira Jr, and V. C. F. Barbosa (2013), Modeling the Earth with Fatiando a Terra, Proceedings of the 12th Python in Science Conference, pp. 91 - 98. doi:10.5281/zenodo.157746 |
fatiando/verde |
Uieda, L. (2018). Verde: Processing and gridding spatial data using Green’s functions. Journal of Open Source Software, 3(30), 957. doi:10.21105/joss.00957 |
fatiando/pooch |
Uieda, L., Soler, S.R., Rampin, R., van Kemenade, H., Turk, M., Shapero, D., Banihirwe, A., and Leeman, J. (2020). Pooch: A friend to fetch your data files. Journal of Open Source Software, 5(45), 1943. doi:10.21105/joss.01943 |
fatiando/harmonica |
|
fatiando/boule |
|
fatiando/rockhound |
|
SHTOOLS |
Mark A. Wieczorek and Matthias Meschede (2018). SHTools – Tools for working with spherical harmonics, Geochemistry, Geophysics, Geosystems, 19, 2574-2592, doi:10.1029/2018GC007529 |
Gravtess |
Šprlák M, Han S-C, Featherstone W (2018). Forward Modelling of Global Gravity Fields with 3D Density Structures and an Application to the High-Resolution (~2 km) Gravity Fields of the Moon. Journal of Geodesy, 92, pp. 847-862, doi: 10.1007/s00190-017-1098-7 |
TGF |
Yang, M., Hirt, C., Pail, R. (2020). TGF: A New MATLAB-based Software for Terrain-related Gravity Field Calculations. Remote Sens. 12(7), 1063. doi: 10.3390/rs12071063 |
GrafLab |
Bucha, B., Janák, J., (2013). A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Computers & Geosciences 56, 186-196, doi: 10.1016/j.cageo.2013.03.012 |
isGrafLab |
Bucha, B., Janák, J., (2014). A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders: Efficient computation at irregular surfaces. Computers & Geosciences 66, 219-227, doi: 10.1016/j.cageo.2014.02.005 |
spherical harmonic synthesis of gravitational curvatures |
Hamáčková, E., Šprlák, M., Pitoňák, M., & Novák, P. (2016). Non-singular expressions for the spherical harmonic synthesis of gravitational curvatures in a local north-oriented reference frame. Computers & Geosciences, 88, 152-162. doi: 10.1016/j.cageo.2015.12.011 |