Sneeuw (2006) Physical Geodesy
Sneeuw N (2006) Physical geodesy. https://www.gis.uni-stuttgart.de/lehre/LectureNotes/LNErdmSS06.pdf
Content
1. Introduction
1.1. Physical Geodesy
1.2. Links to Earth sciences
1.3. Applications in engineering
2. Gravitation
2.1. Newtonian gravitation
- 2.1.1. Vectorial attraction of a point mass
- 2.1.2. Gravitational potential
- 2.1.3. Superposition discrete
- 2.1.4. Superposition continuous
2.2. Ideal solids
- 2.2.1. Solid homogeneous sphere
- 2.2.2. Spherical shell
- 2.2.3. Solid homogeneous cylinder
2.3. Tides 2.4. Summary
3. Rotation
3.1. Kinematics: acceleration in a rotating frame
3.2. Dynamics: precession, nutation, polar motion
3.3. Geometry: defining the inertial reference system
- 3.3.1. Inertial space
- 3.3.2. Transformations
- 3.3.3. Conventional inertial reference system
- 3.3.4. Overview
4. Gravity and Gravimetry
4.1. Gravity attraction and potential
4.2. Gravimetry
- 4.2.1. Gravimetric measurementlespendulum
- 4.2.2. Gravimetric measurement principles: spring
- 4.2.3. Gravimetric measurement principles: free fall
4.3. Gravity networks
- 4.3.1. Gravity observation procedures
- 4.3.2. Relative gravity observation equation
5. Elements from potential theory
5.1. Some vector calculus rules
5.2. Divergence Gauss
5.3. Special cases and applications
5.4. Boundary value problems
6 Solving Laplace’s equation
6.1. Cartesian coordinates
- 6.1.1. Solution of Dirichlet and Neumann BVPs in `x`, `y`, `z`
6.2. Spherical coordinates
- 6.2.1. Solution of Dirichlet and Neumann BVPs in `r`, `\theta`, `\lambda`
6.3. Properties of spherical harmonics
- 6.3.1. Orthogonal and orthonormal base functions
- 6.3.2. Calculating Legendre polynomials and Legendre functions
- 6.3.3. The addition theorem
6.4. Physical meaning of spherical harmonic coefficients
6.5. Tides revisited
7. The normal field
7.1. Normal potential
7.2. Normal gravity
7.3. Adopted normal gravity
- 7.3.1. Formulae
- 7.3.2. GRS80 constants
8. Linear model of physical geodesy
8.1. Two-step linearization
8.2. Disturbing potential and gravity
8.3. Anomalous potential and gravity
8.4. Gravity reductions
- 8.4.1. Free air reduction
- 8.4.2. Bouguer reduction
- 8.4.3. Isostasy
9. Geoid determination9.
9.1. The Stokes approach
9.2. Spectral domain solutions
- 9.2.1. Local: Fouriere
- 9.2.2. Global: spherical harmonics
9.3. Stokes integration
9.4. Practical aspects of geoid calculation
- 9.4.1. Discretization
- 9.4.2. Singularity at `\psi` = 0
- 9.4.3. Combination method
- 9.4.4. Indirect effects